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FOREWORD 

Rocketdyne, a Divis ion of North American Aviat ion,  

Inc. ,  has prepared t h i s  r e p o r t  under Nat ional  Aero- 

nau t i c s  and Space Adminis t ra t ion,  George C. Marshall 

Space F l i g h t  Center ,Propuls ion and Vehicle Engineer- 

ing  Laboratory,  Huntsv i l le ,  Alabama, Contract  

NAS8-11325, G.O. 8624. This  r epor t  covers  t h e  

per iod fromtJuly 1964 t G h  December 1966. I 

ABSTRACT 

A s e r i e s  o f  new type s e a l  concepts were generated,  

and t h r e e  o f  t h e  most  promising were d e t a i l e d  f o r  

f a b r i c a t i o n  and t e s t i n g  t o  eva lua te  t h e  des igns  

f o r  f u t u r e  turbopump app l i ca t ions .  Desc r ip t ions  

of  t h e  var ious  concepts, b a s i s  f o r  t h e  f i n a l  s e l -  

ec t ions  o f  t h e  sea l s  f o r  eva lua t ion ,  and r e s u l t s  

o f  t e s t i n g  a r e  included. 
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INTRODUC T I ON 

The continued advancement of rocket engine turbomachinery has required the 

development of new shaft seal technology to cope with the extremes of temp- 

erature and speed. Although seal engineering technology has progressed 

significantly, turbomachinery performance demands have also increased 

particularly in the areas of high speed, high pressure, throttleability 

(wide speed range), and extended life. 

The static portion of the mechanical seal, referred to as the secondary 

seal, must maintain its integrity while accepting axial shaft displacements 

caused by elastic deformations, fluid pressure pulsations, and vibrations. 

This report summarizes efforts directed toward development of new concepts 
intended to solve some of the problems of  secondary sealing. 

At a meeting in Huntsville, Alabama, in August 1964, representatives of 
NASA and Rocketdyne finalized a program to investigate new approaches t o  

secondary sealing methods. This program is an attempt to study new second- 
ary seal concepts; pointing the way to achieving lower leakage, greater 
reliability, and longer life at operating conditions of  greater speeds, 
higher pressures, and longer life of future turbopump designs. 

lj2 
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A program to investigate the secondary seal area of positive-type shaft 
seals was initiated in July 1964. As a result, a total of 18 seal con- 

cepts were evaluated; three of which were selected for fabrication and 

performance analysis. 

The welded metal bellows was selected as the secondary seal for all three 
seals, each having a different method of controlling the oscillatory motion 

of the bellows caused by the mechanical vibration and pressure pulsating 

environment of the turbopump. Of the three concepts selected and tested, 

one design, known as the particle damped seal, has been shown to have the 

best damping characteristics. 

Further refinement of the particle damped seal is recommended to improve 

the response of the seal utilizing metal particles to reduce the effect 
of  displacement inputs. 
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SECONDARY SEAL PROGRAM 

PROGRAM OBJECTIVES 

The basic program was directed at generating new approaches to the problem 
of secondary sealing with emphasis on advancing seal technology for future 

turbopump generations. 

To meet the program requirements the following tasks were established: 

1. Generate a number of new approaches to the secondary seal based 

on advanced turbopump operating parameters 

2. Evaluate these concepts to arrive at several o f  the most 

prom i s ing 

3. Perform detailed analyses and designs resulting in procurement 
o f  test seals of the selected concepts 

4. Conduct nonrotating tests to evaluate concepts and to provide 

information f o r  future designs 

DESIGN CONCEPT SELECTION 

Seal design criteria were based on expected future turbopump performance 

requirements. Future pump discharge pressures are expected to be higher 
than current levels and the pressure at the seal cavity could readily be 
100 percent above current practice. The seal temperature environment 

is expected to be in a range of -323 to +lo00 F. 

5 



Seventeen seal concepts were evolved. 

vestigation, the following three designs were selected for detailed in- 

vestigation and possible fabrication. 

After a thorough analysis and in- 

1. 

2. 

3. 

Piston Damped Seal (Fig. 1) 

Purged Double Lip Seal (Appendix 

Orifice Damped Seal (Fig. 2) 

Upon further investigation, the purged double lip seal was dropped because 

of temperature limitations and susceptibility to contamination. Late in 

the program a new concept evolved, known as the particle damped seal and 
w a s  the subject of effort under a program extension. 

A description of the 17 seal, concepts and the results of the feasibility 
investigation,are included in the Appendix. 

R result of the secondary seal selection evaluation described in the 

Appendix was the conclusion that the concept having the greatest number 

of advantages is the welded metal bellows. The metal bellows design pro- 
vides the most positive method o f  preventing secondary seal leakage, with 
a minimum number of potential leak paths. 

The high performance of the metal bellows mechanical seal can be attained 
if a means can be found for controlling the potentially unstable seal face 
movements induced by vibratory inputs and fluid pressure pulsations. The 
ability of  the bellows to function as a stable secondary portion of the 
mechanical seal has a major part in controlling leakage and life of the 
sealing faces. As a result o f  the potentially unstable behavior o f  bel- 
lows, considerable attention has been given throughout the seal industry 
to the problems of bellows damping. 
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A conventional method of retarding unstable motion of bellows is by fric- 

tional devices, usually spring loaded, contacting the bellows convolutions 

and/or the bellows carrier. 

not easily controlled and damper material and contacting surfaces are 
subject to wear. In addition, if the input vibration becomes large, a 
higher frictional load is then necessary for adequate control. Simultane- 
ously, this higher load increases energy input and the potential for igni- 
tion of exposed propellants. The three damping concepts selected for 
evaluation under the investigation covered in this report do not depend 
upon exposed friction damping. 

Although effective, the amount of damping is 

Based on the selection of the metal welded bellows, a test program was 

outlined to study the effects of incorporating bellows vibration damping 

devices to ensure that the damper does not impair the normal operation of 

the bellows with reference to primary seal separation and bellows life. 
A test program was planned to include axial cycling of the bellows both 

mechanically and through pressure pulsations to observe bellows integrity 

and seal performance. A test was planned to accelerate the mating ring 

away from the bellows carrier to determine bellows response or recovery 

rate. Vibration tests were planned to observe the reaction of the bellows 

to vibration input. 
seal face loading and normal quality control inspection tests. 

Other tests were also planned for analysis of total 

CONCLUSIONS 

Piston Damped Seal 

The piston damped seal (Fig. 1 ) employs a viscous method of controlling 
induced vibratory motion of the bellows and consists of a piston ring con- 
tained in the housing maintaining a close clearance with the carbon retainer 

7 



Ik ROCYETDYNE A D I V I S I O N  O F  N O R T H  A M E R I C A N  A V I A T I O N ,  I N C  
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High Pressure 
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Rear Carrier Seal Face and 
Bellows Carrier 
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L 

-  ALE 2x 

Figure 1 .  Piston Damped Seal Design 
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outer diameter. The sealing fluid surrounding the bellows OD is forced 
through the controlled clearance as axial movement of the bellows changes 

the volume between the housing and bellows. 

Based on initial computer studies describing damping characteristics in 
terms of displacement vs time response, the seal shows a definite reduction 

in amplitude when the piston clearance is reduced to 0.002 inches from 
0.010 inches, A conclusion based on pressurized cryogenic tests conducted 
on actual hardware is that a relatively high density and viscosity is re- 

quired. The tests also show that the use of a piston does not impair 
normal bellows operation, which indicates that excessive damping is not 
obtained under the selected test conditions. No apparent damping exists 

in a gas environment, which precludes the utility of this design in the 
turbine area. 

I .  
Although damping is apparently obtainable in a cryogenic fluid when a close 

clearance is maintained, a further reduction in clearance is accompanied by 

rubbing and will approach the method of  frictional damping currently employed 

in the seal industry. Because of  a somewhat restricted use, the piston 

damped seal was ruled out f o r  further refinement. A more practical use 

for this design would be in seals for oils or similar fluids of relatively 

high viscosity and for application where rubbing contact may be permissible. 

Orifice Damped Seal 

The orifice damped seal (Fig, 
imposed axial vibration. The design consists of two cavities formed by 

two pairs of radially stacked welded bellows and separated by an orifice 
plate. 

2 ) also utilizes viscous friction to absorb 

The end fitting of one bellows cavity has a sealing surface to 

9 
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In 
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(- F i l l i n g  P o r t  

(Damping F l u i d  Cavity) 

NaK-77 o r  l i qu id  
n i t rogen  

S en1 Compensator 
Face Bellows (2 p ly)  

c o n e l  600 Inconel  750 

-- 
24 o r i f i c e s  

Inconel  750 v a r i a b l e  s i z e s  

Figure 2 . O r i f i c e  Damped S e a l  Design 
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are welded to a radial extension of the sealing surface placing the cylin- 
ders at the OD of the bellows. The cylinders are filled to an effective 

level with molybolenum spherical particles. The spherical particles react 

to vibration inputs by absorbing displacement energy through inertia and 
friction of the particle masses acting on the inside surface of  the 

cylinders. 

The prime advantages over conventional vibration damping devices and othe>, 
concepts considered in this program are simplicity of design and reliability 
potential with no contamination or fire risk when in the proximity of pro- 
pellants. In addition, effective damping can be obtained over a wide range 1 

of temperatures, from cryogenic to turbine gas environments. 
,’ 

Vibration data taken during testing o f  the particle damped seal indicate 
effective damping of seal nonrotating parts with the potential advantages 

of increasing carbon seal face life and improving leakage characteristics. 
Further analysis and testing is recommended to arrive at a configuration 

offering the most desirable damping characteristics and seal performance. 

Further discussion of the recommended test program is given in another 

section of the report. 

13/14 
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CONCEPT DESIGN 

PISTON DAMPED SEAL 

Figure 4 depicts the final design of the piston damped seal. The parameters 

o f  this design are: 

2 Mass (M) = 0.00065 lb sec /in. 

Spring Rate (K) = 400 lb/in. 

Bellows Effective Diameter = 3.60 inches 

Piston Diameter = 3.80 inches 

Radial Piston Clearances = 0.002, 0.004, 0.006, 0.008, 0.010 inch 

"he material o f  the welded bellows is Inconel 750 with 0.006-inch plate 

thickness. The piston is solid and has a radial clearance maintained con- 

stant by three small equally spaced pads on the piston, and contacting the 

bellows carrier OD. 

During the parameter study involving a gas medium, no appreciable damping 

was obtained for this seal with the small axial motion involved. A damp- 

ing coefficient of sufficient magnitude is obtained from a liquid nitrogen 

medium. 

The generalized equation solved for use in the parameter study is 

2 dx 2 - + K x + c ( z )  d x  = o  
dt2 
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Turbulent flow was assumed to exist through the piston ring clearance. 

Figures 5 ,  6,  and '7 show the displacement vs normalized time for several 

piston ring clearances. Radial clearances from 0.002 to 0.010 inches 

were evaluated. Table 1 compares some o f  the results of the parameter 
study. The additional nomenclature used is as follows: 

T = time lapse in milliseconds to reach zero displacement from a unit 

compression for turbulent flow through the piston clearance. 

WN = natural frequency in cps of the spring mass system 

C/Cc = Damping ratio of the system € o r  turbulent flow through the 
clearance 

The rat 
damping 

o C/Cc is the ratio of the damping coeff 
coefficient (C ) of the system. 

C 

cient (c) to the critical 

Upon concluding the parameter study which resulted in defining the physical 

size of the seal and establishing the limits of control parameters with 

respect to computed damping characteristics, the hydraulic balance and 

unit face load of the seal was considered. 

Seal face loading is one of the primary factors affecting sealing and 
dynamic seal life, and is dependent on two forces; the spring load exerted 
by the bellows and the hydraulic force imposed on the bellows plates by 

the environmental pressure. 

Because the bellows plates will deform due to either a change in pressure 
o r  deflected length ( b  1 ) ,  the bellows characteristics are closely examined. 
The effect of  bellows deformation changes the effective hydraulic area of 

the plates and directly affects the seal face loading. The hydraulic 
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analogy is normally used in considering seal operation; therefore, a change 

in deformation changes the hydraulic area. The effective hydraulic area 

is a computed value, normally in terms of the effective diameter (De) as 

shown below. 

EXTERNAL 
PRESSURE 7 EFFECTIVE AREA 

OF HYDRAULIC \ 
SEAL FACE AREA LOADING 

------ i - -  

- - ? - - - I - -  n 

ID I 1  
Computation of  the effective diameter in this case does not include the 
pressure distribution across the seal face width because during tests to 
obtain seal face loading data, the face is coated with an adhesive to 
establish a known sealing point at the seal face OD. 

Therefore, the effective hydraulic area is 

2 F h  
) = - e P 7/4 (OD2 - D 

where 

F'h = hydraulic force 

P = imposed pressure 

For computation of the seal face diameters a balance ratio is required 

which is expressed as 

. .  

effective hydraulic area 
seal face area (Af) B =  

22 
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A balance ratio of 0.7 was chosen for these seal designs to provide a 
margin for dimensional tolerances and variation o f  pressure distribution 

across the seal face. 

Based on hydraulic force data obtained from the seal vendor, the seal face 

diameters are computed relative to the established balance ratio of 0.7.  

For this case, the diameters chosen are: 

+o. 000 
OD 3.680 oo2 

+o. 002 
ID 3*516 - 0 . ~ 0 0  

ORIFICE DAMPED S U  

Figure 8 
below are the control parameters governing operation of the seal. 

depicts the final design of the orifice damped seal. Listed 

n 
lb-secL 
in. MI = 0.0009 

2 lb. -sec M2 = 0.0012 in. 

A1 = 4.1 sq in. 

= 5.0 sq in. 

5 = 0.20 sq in. to 0.05 sq in, 

N = 15 to 25 

IC1 = 500 lb/in. 

= 2000 lb/in. 

where 

M1 = effective mass of seal and fitting 

M2 = effective mass of compensator end fitting 

A1 = area of seal cavity 

95 
-J 
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A2 = area of compensator cavity 

= total area of orifice A3 
N = number of holes 

K1 = spring rate of seal bellows 

K2 = spring rate of compensator bellows 

The generalized equations solved for the fluid conditions of laminar and 

turbulent flow are 

- 0 for laminar + a + - -  ‘dx 
dt 

2 d x  - 
at2 

and 

2 2 
+ Kx + (E) = 0 for turbulent d x  

dt2 
- 

Some of the results of the computer study varying the control parameters 
are shown in Table 2. 

Computer analysis indicates damping can be obtained with the described 

system using liquid nitrogen; however, a stable condition of liquid is 
required during all periods o f  operation. Sodium potassium, used as the 

damping medium, is a more predictable fluid especially in a temperature 
environment of 1000 F or greater. 

Sodium potassium is a eutectic alloy called NaK - 77 (77-percent K and 
23-percent Na) and is being used as the damping medium in the orifice damped 

seals for operation in a 1000 F gaseous environment. 

present day hydraulic fluids revealed that they would not be as satisfactory 
as NaK over the temperature range of interest, 70 to 1000 F. 

A review of the 

25 
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Tlic properties of intcrcst in this program are wide operating temperature 

range, low density, high thermal conductivity, and relatively good clicmical 
stability. NaK-77 has a melting point of 12 F and boils at about 1443 F 

under atmosphcric pressure. The density is comparable to that o f  conven- 
tional hydraulic fluids, while its viscosity is somewhat lower than that of 
water. Figures 9 through 13 show the vapor pressure, viscosity, density, 
thermal conductivity, and specific heat of NoK-77 as a function of temperaturc. 

Because of  the hazards imposed when using NaK, safety precautions are re- 

quired. Listed below is an outline to show the response o f  NaK to certain 

environments. 

1. Water reacts violently with NaK, to form hydrogen gas and the 

oxides and hydroxides of sodium and potassium. 

action is great enough to ignite mixtures of hydrogen and oxygen 

if air is present. 

The heat o f  re- 

2.  Alcohols react mildly with NaK at room temperature and may be 

used for cleaning under controlled conditions. Reaction is fast- 
est with methyl and ethyl alcohol, slower with the heavier alcohols 

such as propyl and butyl. Air must be excluded from the cleaning 
system. 

3. At roou temperature, bulk NaK open to the air reacts slowly with 
oxygen to form a surface scum. If spilled, small particles of 
NaK may ignite spontaneously, particularly with dust and many com- 
bustible materials. The ignition temperature for bulk NaK in 
air is about 400 F. 

4. Carbon tetrachloride reacts violently and explosively with NaK. 
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5. Trichloroethylene froms highly unstable, dangerously explosive 

dichloroacetylene. 

6 .  Natural hydrocarbons from refined petroleum oil are inert. Kero- 

sene and white mineral oil are very useful in flusing the system 

and excluding air from the surface of NaK in open containers. 

7 .  Carbon dioxide is considered dangerously reactive. 

8. Fire extinguishing materials are dry calcium carbonate, dry sand, 

and dry sodium chloride. 

Corrosive attack of NaK on Inconel 750 was considered to be a problem in 

high-temperature testing, one requiring investigation. There are several 

important modes of attack. 

One is mass transfer, in which elements from one metal in one part of the 

systtem are dissolved and reprecipitated in another part of the system. 

Grain boundaries are also attacked through fingerlike dissolution along 

the boundaries, uneven surfaces, or as slivers of corrosion product in 

between grains. 

tack of particular importance with welded bellows plates. 

rolled in a "dirty" condition or else welded without proper cleaning will 
have soluible inclusions in the bellows plate as well as in the weld bead. 

NaK will dissolve these stringers and weaken the structural joint. Stress 

corrosion is also a potential failure mode with the welded bellows seal. 

Dissolution of stringers of inclusions is a mode of at- 

Plate stock 

An Inconel 750 TIG welded bellows specimen, made under current state-of- 
the-art of seal vendor weld specifications, was submerged in NaK for 7 
hours at 1000 F. The bellows specimen was compressed to induce tensile 

stresses in the bellows. Figures 14 and 15 show the test specimen after 
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I 

___- - ~~ 

mB65-4/ 12/65-C2B 

Figure 15, NaK Ekposed Bellows (View B) 



exposure. The bellows is Inconel 750, the end fittings are Inconel 600, 
and the can enclosure is Inconel 750. The can enclosure with the speci- 

men and NaK was welded shut in an argon atmosphere. "he residue between 

the bellows plates as shown in Fig. 15 

specimen was cleaned with water after exposure. 

is oxide scum formed when the 

Posttest inspection revealed the bellows to be satisfactory. Mass trans- 

fer and stress corrosion cracking were not observed; however, some dissolu- 

tion did take place along the grain boundaries o f  the Inconel 600 end 
fitting. Oxide scale formed during welding in the bead root was dissolved, 
This attack was confined tothe outer surface but does stress the importance 

of "clean" welds. 

PARTICLE DAMPED SEAL 

Initially, a feasibility study was conducted to determine the damping 

potential of metal powder. Molybolenum was selected on the basis of 

ava i 1 abi 1 ity . 

Various sizes of  spherical powder was purchased and a simple test model 

was fabricated. The test model consists of two aluminum blocks with a 

series of drilled holes to contain the spherical particles. The blocks 

are clamped together on a spring beam and mounted to the vibration plate 

as shown in Fig. 16. 
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Table 3 gives the characteristics of the particles tested: 

TABLE 3 

SIZE, WEIGHT, AND DENSITY OF 
SPHERICAL MOLY PARTICLES 

(SIX SAMPLES CONSIDERED) 

Sample 
No. 

Di ame t e r 
Inches 

+ O .  0059 
0.0059/0.0043 
0.0043/0.0035 
0.0035/0.0029 
0.0029/0.0023 
0.0023/0.0017 

Microns 

149 
149/131 
131/88 

88/74 
74/57.5 
57.5/44 

Weight, 
Grams 

276.75 
184.50 
982.65 
149.00 

251.15 

245.90 

Approximate 
Density, 

lb/in. 7 1  

0.232 
0.230 
0.225 
0.225 
0.226 
0.226 

I 

NOTE: The quantity of particles above represents the quantity 
available for the test and not the amount actually 
used. 

Two methods o f  determining the amount of damping were employed: 

vibration, and (2) free vibration. 

(1) forced 

Forced Vibration 

The exciting force is held constant (2 g-peak) and the exciting frequency 

.is varied. The damping is determined by measuring the bandwidth of resonance 
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peak at the half-power points in terms of normalized frequency. 

is as follows: 

The formula 

fl - fj 
f 

$\ f L! f 3 damping 3 3.14 f 2 
n n 

where 

fn = resonant frequency 

fl = lower half-power frequency 

f2 = upper half-power frequency 

Free Vibration 

One end of the beam is fixed and the other end is deflected and then allowed 

to freely return to its starting reference point. The damping is determined 

from the rate of decay of oscillation. This method is defined as the logari- 

thmic decrement, and it 

successive amplitudes: 

A I  damping E 

where 

is the natural logarithm of the ratio o f  any two 

x2 

x1 
In - 

In = natural logarithm 

X1 = first cycle amplitude 

$ = second cycle amplitude 

39 
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Half Full 

The forced vibration method of testing was the most successful and reli- 

able. Because of the loss of energy to the beam support, the data from 

the free vibration method was inconsistent. 

Full 

In addition t o  damping, the frequency at resonance and the amplification 

at resonance were measured and recorded. The amplification is defined as 

the ratio o f  the acceleration into the beam t o  the acceleration out of 

the beam. 

Particle 

No. 1 

No. 2 

No. 3 
No. 4 
No. 5 

A0 
Ai 

G out o r  - Amplification = - G in 

I 

Fn Ao/Ai e f A Fn Ao/Ai L? f A 

165 10.80 0.368 0.288 155 4.51 0.735 0.523 
164 11.00 0.282 0.157 

163 8.91 0.325 0.214 143 3.38 1.156 0.521 
162 7.36 0.416 0.273 
162 6.4'3 0.543 0.300 149 3.61 1.081 0.826 

Tests were run  on all six particle sizes with the fixture half-full and 
on four particle sizes with the fixture full. 
particles of  the No. 2 and No. 4 sizes to fill the fixture. The results 
of the tests are as follows: 

There were not enough 

5.82 0.663 0.434 
170 37.80 0.100 0.070 "" 149 7.87 0.950 0.877 

Fh = resonant frequency bf = forced vibration dan 

Ao/Ai = amplification L! = free vibration damping 
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The r e s u l t s  of the t e s t  c l e a r l y  i n d i c a t e  t h a t  t he  b e s t  damping charac te r -  

i s t i c s  a r e  obtained with t h e  No. 6 s i z e  p a r t i c l e s .  

decreased ,  from s i z e  No. 1 t o  S i ze  No. 6 ,  the  resonant  frequency decreased ,  

t h e  ampl i f i ca t ion  decreased,  and t h e  damping from both t h e  f r e e  and the  

forced v i b r a t i o n  increased. 

A s  the  p a r t i c l e  diameters  

A t e s t  was conducted t o  determine what por t ion  of t he  damping was caused 

by t he  mass of the  p a r t i c l e s  and what po r t ion  was caused by the  motion of 

the p a r t i c l e s .  

Two s t e e l  masses (equal t o  the p a r t i c l e  mass) were a t tached  t o  the  empty 

p a r t i c l e  ho lders  and t h e  t es t  conducted i n  the  same manner a s  t he  previous 

t e s t s .  The t e s t  was repeated with one of t he  s t e e l  masses removed. The 

r e s u l t s  shown below i n d i c a t e  t h a t  t h e  masses caused t h e  resonant  frequency 

t o  decrease ,  t h e  ampl i f ica t ion  t o  i n c r e a s e ,  and t h e  damping t o  decrease .  

Comparing the  t e s t  r e s u l t s  f u r t h e r  i n d i c a t e s  t h a t  damping can be a t t r i b u t e d  

t o  r e l a t i v e  movement of t h e  p a r t i c l e s  i n  t h e  conta iner  and t h a t  a s o l i d  

mass of p a r t i c l e s  would have no e f f e c t i v e  damping. 

Damping was next  measured w i t h  t h e  No. 6 p a r t i c l e  s i z e  varying the  q u a n t i t y  

by weight from 50 t o  200 grams. This was done t o  determine t h e  e f f e c t s  

of d i f f e r e n t  amounts of t h e  same p a r t i c l e  s i z e  on damping. Figures  17 and 

18 show t h e  r e s u l t s  of t he  t e s t s  from forced v i b r a t i o n  and f r e e  v i b r a t i o n .  
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TEST PROGRAM AND HARDWARE DESCRIPTION 

TEST PROGRAM 

The seals in this program were not designed for a specific turbopump ap- 
plication or planned for rotational tests. However, requirements and op- 
erational criteria are based on conditions consistent with advanced 

turbomachinery, The following tests were specified. 

Static Leakage and Proof Pressure 

Static leakage and proof pressure tests are conducted at GN2 pressures up 

to 375 psi to verify mechanical integrity and design requirements. Leak- 

age across the seal face as well as a mass spectrometer check (where appli- 

cable) for porous weld beads is made. 

Total Face Loading 

Total load tests are conducted to measure the effective seal face unit 
loading as a result of combined bellows spring load and either pneumatic 

o r  hydraulic loading. This is conducted using an Instron machine having 

a rate of stroke range from 0.0003 ips to 0 .83  ips which will allow a 
dynamic measure of seal face loads. 
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Pressure Cycling 

Pressure cycling is a measure of the bellows integrity to withstand pres- 

sure pulses up to 200 ?jO psig in a liquid nitrogen environment. 

leakage is measured throughout the test. Tests at 1000 F are not conducted 
because of difficulties in designing a pressure pulsing system at this 

Seal 

6 temperature. Over 10 cycles were planned. 

Mechanic a 1 Cy c 1 in6 

Mechanical cycling tests are conLxted to mon, t o r  seal integrity when 

exposed to displacements of kO.030 and k0.015 inches at 16 to 100 cps in 
LN and 1000 F GN2. Seal leakage and displacement rate was recorded for 

a period of 10 cycles. 6 2 

Recovery Rate 

The recovery rate test involves displacement of the mating ring from the 
maximum design bellows compression of the seal to the minimum compression 

with the intent to show the ability of the seal face to follow the mating 
ring. Seal leakage is also observed. 

V i  br a t ion 

Vibration tests consist of the following: 

48 

1 .  Resonance Search. Record the frequency of all resonant points 
observed in a 2 g peak-to-peak sweep from 15 cps to 2000 cps in 

the axial axis of the seal. 
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2. Sinusoidal Resonance Test. Subject the seal to its major resonant 
frequency f o r  10 minutes in the axial axis at the following ~ P V P ~ :  

15 to 50 cps, a t  0.2-inch double amplitude 

50 to 500 cps, at 12 g peak 
500 to 1000 cps, at 0.0006-inch double amplitude 
1000 to 2000 cps, at 30 g peak 

NOTE: g = 0.0511 f2d (gravity units) 
where 

f = frequency in cps 

d = double amplitude in inches 

IINtDWARE DESCRIPTION 

Mechanical Cycle Tester 

The mechanical cycle and recovery rate tester Fig. 20 has the capability 

of mechanically cycling the seals of this program at kO.015 to 50.030 inch 

amplitude at 16 to 100 cps. 
ridge heaters to maintain a 1000 F gas environment at the seal OD while 
pressurized up to 250 psig. The test housing also contains ports for fill- 
ing and maintaining LN in the cavity exposed to the seal. Thermal insula- 

tion surrounds the test housing t o  reduce heat losses. 

The test housing contains eight 525-watt cart- 

2 

The piston housing has two cavities separated by a piston; the end cavity 
can be pressure pulsed to move the shaft for recovery rate studies. 
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Vibra t ion  Tes t e r  

The v i b r a t i o n  f i x t u r e  cons i s t s  of a housing and mounting face  f o r  the  s e a l .  

The t e s t  housing conta ins  hea te r s  and LN p o r t s  t o  be used i n  the  mechanical 

cyc l ing  t e s t .  The back s i d e  of t h e  s e a l  can be f i t t e d  wi th  a cap t o  measure 

leakage o r  without  t he  cap f o r  v i s u a l  observa t ion  of bellows v i b r a t i o n  and 

s e a l  response.  Proof pressure and s t a t i c  leakage t e s t s  can a l s o  be made 

i n  t h i s  f i x t u r e .  

2 

Tota l  Load Tes te r  

The t o t a l  load t e s t e r  cons i s t s  o f  a mounting f i x t u r e  f o r  t h e  s e a l  adapted 

t o  be mounted i n  an Ins t ron  t e s t  machine t o  measure t h e  t o t a l  s e a l  f ace  

load wi th in  opera t ing  pressure and the  displacement.  

Steady-state  pressures  a re  measured wi th  s tandard gages; p ressure  pulses  

a r e  measured wi th  pressure  t ransducers .  The pressures  a r e  those  pr imari ly  

imposed on the  s e a l  during t e s t .  Thermocouples a r e  used t o  monitor t h e  

temperature c lose  t o  t h e  s e a l  face .  Sea l  leakage,  e i t h e r  LN2 o r  1000 F 

GN2, is  ported through a hea t  exchanger t o  a flowmeter. Accelerometers 

a r e  used t o  measure displacement input  and output  i n  a d d i t i o n  t o  l i n e a r  

t ransducers  where appl icable .  

Table 4 s p e c i f i e s  t h e  instrumentat ion used f o r  t he  t e s t s ,  

51 



t3 ROCYETDYNE 0 A D I V I S I O N  O F  N O R T H  A M E R I C A N  A V I A T I O N ,  I N C  

w 
kl 3 

I 

Q 
k 
E;1 

2 

b k  
aa l  

k 
a a 
k 
0 
V 

2 

K 
a 
rl 

V 

k a + 
2 

i2 
3 
0 

k a 
+a 
k + o  

e o  

a E 
Q 

L 

a La 
k rl a 

: 
- 3  

a a 
1 + 
.d 
d 

4 
a c m 
k a 

Jz 

6" 
.d 

0 
M 
0 

0 
+I 

a 
2 
In 
4 
0 

0 
+I 

Fr 
0 
0 
0 
rl 

+ 
a 
d m 

Frc 

a m 
I 

m a 
0 

0 
0 

0 + 
a 
d 

rl 

2 
.d 
V 
UJ 

0 
0 
0 
rl 

0 + 
0 

4 
Q 
a rn 

M 
.d 
rn a 
0 
Ln 
+I 

0 
0 
04 

Er 
M 
hl 
M 
I 

Q, a 
1 + 
.d 
rl 

4 
a a a 
k 
0 
0 

62 

V 
d a a 
tn 

+ cn m 
A 
Kn 

m 
0 4  
? h  

5 
Frc 
rl 
m a 

Kn 

V 
d 
m 
a rn 

+ c a a a 
5 

E! 

+ 
Q 
k a a 

fi 
A 
Q 
a m 

a s 

E 

-e a 
k 
a a 

kl 

rl m 
e, 
tn 

k 
3 a 4 

k m 
k 

m a : a  

E k l  E 
rl 4 
Q h l  a a $ 5  m 

c a 
o a  
* 
3 

. -  

52 



(SL ROCYETDYNE A D I V I S I O N  O F  N O R T H  A M E R I C A N  A V I A T I O N ,  I N C  

u 
W 

4 

O k  
i i :  
G b "  

Ll 
Q, 
C, 

3 0 
i2 

Q, 
M) 
m 
3 
m 
aJ 
4 

Q, 
k 
1 
4 
m 
k 
Q, a 
El 

4 
m 
aJ 
m 

53/54 



Ik ROCYETDYNE A D I V I S I O N  O F  N O R T H  A M E R I C A N  A V I A T I O N ,  I N C  

TEST F'ROCEDUE AND RESULTS 

MECHANICAL CYCLING TESTS 

Upon completion of dimensional verification, static leakage, and pressure 
tests, the piston damped and orifice damped seals were mechanically cycled. 
The particle damped seals were not exposed to this test because sufficient 

data was obtained from the piston damped seal both having the same bellows 
configuration. 

Piston damped S/N 3 was installed in the tester with a damping piston to 
maintain a radial clearance of 0.004 inch. The bellows was cycled for  a 

total of 10 cycles at 16 cps with kO.025 inch peak-to-peak amplitude in 
LN2 at 250 psig. 

6 

4 

The seal face satisfactorily followed the cyclingshaft at 16 cps as evid- 

enced from the low and constant LN lealrage rates and comparisons of dis- 

placement transducer traces. Surges in the leakage rates indicate a lag 

in the response of  the seal face with respect to the shaft. The lealrage 

rates during the mechanical cycling test varied between 0.4 and 0.6 scfm. 

2 

Two linear displacement transducers were used: one to monitor the cyclic 

input axial displacements to the tester shaft, and one to monitor the seal 

face axial movements in response to the inputs. Outputs from the two trans- 

ducers were recorded on a CEC Recording Oscillograph. A typical output 

is shown in Fig. 21 which shows that the seal face carrier followed the 

shaft displacements. 
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P o s t t e s t  inspec t ion  of t he  sea l  revea led  no f a i l u r e s  i n  the  welded bellows. 

However, welding of t he  displacement t ransducer  probe tab t o  t h e  s e a l  f ace  

c a r r i e r  I D  had s u f f i c i e n t l y  d i s t o r t e d  the  c a r r i e r  OD t o  a l low rubbing con- 

t a c t  between t h e  c a r r i e r  OD and t h e  p i s t o n  r i n g  ID.  A s p r i n g  r a t e  t e s t  

ind ica ted  the  drag  t o  be only 1 pound. 

The next  p i s t o n  damped s e a l ,  S/N 2 ,  w a s  mechanical cycled without  a p i s ton  

r i n g  i n s t a l l e d  t o  ob ta in  a comparison and t o  s tudy s e a l  performance without  

a p i s ton  i n s t a l l e d .  

The p i s ton  damped s e a l ,  S/N 2 ,  w a s  exposed t o  mechanical cyc les  a t  k0.007 

inch o f  amplitude a t  100 cps i n  LN a t  250 ps ig .  Af te r  69,000 c y c l e s ,  the  

s e a l  leakage exceeded t h e  range of t h e  flowmeter and the  s e a l  was removed 

from the  t e s t e r .  Inspec t ion  revealed t h e  s e a l  t o  have a f a i l e d  bellows i n  

the  I D  weld a t  t h e  h e a t  a f fec ted  zone of t he  t h i r d  and e i g h t h  convolut ions.  

The s e a l  f ace  apparent ly  d id  not remain i n  contac t  with t h e  mating r i n g  

a t  t he  100-cps cyc l ing  r a t e ,  a s  evidenced by f r e t t i n g  between t h e  s e a l  f ace  

and mating r i n g  and comparison o f  the  displacement t ransducer  t r a c e s .  

Normally, an increase  i n  leakage would be i n d i c a t i v e  of s e a l  face  separa- 

t i o n ;  however, because of the  bellows f a i l u r e ,  no increase  i n  leakage could 

be observed. 

2 

The cycl ingdisplacement  amplitude was found t o  be a t t enua ted  dur ing  the  

above 100-cps t e s t  t o  +O.OO7 inch;  t he  previous displacement amplitude 

a t  16 cps w a s  approximately 20.013 inch. A s p h e r i c a l  bear ing  w a s  rep laced  

i n  t h e  l inkage system i n  an  attempt t o  reduce t o t a l  system play.  A check- 

out t e s t  f u r t h e r  r e s u l t e d  i n  f a i l u r e  of t h e  t e s t  hardware t o  the  poin t  

of bending the  t e s t e r  support  and displacement s h a f t .  Because of t h e  

apparent l imi t ed  c a p a b i l i t y  of t h e  t e s t e r ,  t he  frequency w a s  reduced t o  

16 cps i n  a l l  cases .  
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A metallographic analysis to determine the mode of failure was conducted; 

the results showed the following: 

1. The Inconel X-750 bellows failed as a result of fatigue along the 

base of the ID convolution welds. 

2. The welds of the bellows were metallurgically sound and of 

acceptable geometry. 

3 .  The parent metal microstructure of the bellows was metallurgically 
sound and did not contribute to the failure. 

A transverse section of the bellows was removed and photographed to show 

the relative location of the two failed areas shown in Fig. 22. Sections 
through each of the two failed areas were prepared for metallographic 

examination and measurement. A fractograph was taken (Fig. 24) which 
establishes the failure to be caused by fatigue. Figures 23, 25, and 26 

show the extent, nature, and location of the failures. 

The bellows plate thickness was measured to be 0.006 inch, and micro- 

hardness readings established that the bellows was in the heat-treated 
condition. The parent metal Rochell hardness was 35 Rc, and the welds 
were approximately 37 Rc. All associated factors were favorable for 
optimum service from the Inconel X-750 bellows. 
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Figure 22- Sect ion  Removed From Inconel  X-750 Bellows 
P i s t o n  Seal Showing Ruptures (arrows) on 
the  I D  Surf a c e .  

Mag: 8X Etchant: Three Acids  

Figure 23. Transverse S e c t i o n  Through F a i l e d  Area 
(Third Convolution From Bottom, F i g .  1).  
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Mag: lOOX Etchant: Three Acids 

Figure 24. Fracture Location Along 
Base of Weld. (Note 
Straightness of Fracture 
Which is “ypical of a 
Transgranular Failure) 
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In accordance with the program plan, mechanical cycling of the piston 
damped seals was completed with the inclusion of S/N 4. 
mary of the testing is shown in Table 5. 

A tabulated sum- 

0.0042 

0.0042 

TABLE 5 

TEST SUMMARY, PISTON DAMPED S W S  

LN2 at 250 psig 1,000,000 

LN2 at 250 psig 1,000,000 

Cyc 1 ing $ 
0.0072 

Displacement , 
inch 

LN2 at 250 psig 1,000,000 

+o. 013 

20.030 

+o. 015 
ko. 030 

Clearance, Seal OD 

nokpiston LN2 at 250 psig 1 69,000 I 

1 
Leakage, 

scfm 

0.4 to 0.8 

0.8 

failure 

1 to 5 

The last test (S/N 4) completed on 22 April showed no change in bellows 
response when compared with data from previous tests. The higher leakage 
rate experienced on the last test is not necessarily a function of rela- 
tive movement between the adjacent sealing surfaces because during all 

tests, a slight roughening of the contacting surfaces has been noted. 

Mechanical cycling of orifice damped seals S/N 4 and S/N 2 was completed 

in March 1966 with no problems at the test conditions shown in Table 6. 

The failure of S/N 2 without a piston installed indicates the potential 
need of a piston, because no failure occurred with S/N 3 o r  4. 

the cycling rate was greater for S/N 2 ,  the displacement was only half of 
that imposed on S/N 3 and 4. 

Although 
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t 

Cycling 
Rate, Displacement, Seal OD Leakage, 

S/N cps inch Environment Cycles scfm 

4 30 +-0.030 900 F GN2 at 250 psig 1,000,000 0.3  

2 16 +-0. 030 LN2 at '250 psig 1,000,000 < 0.3 
- 

TABLE 6 

TEST SUMMARY, ORIFICE DAMPED SEXLS 

Posttest inspection showed the seals to be in excellent condition with only 

very minor scratches on the seal faces. A static leak check with GN at 

30 psig indicated a leakage of less than 10 scims. 
2 

A typical test setup is 

shown in Fig. 27 , 28 , and 29. 

On 12 May 1966, a mechanical cycling test was completed on seal S/N 6 with 
sodium potassium (NaK) in the bellows interior. 

NaK under an argon blanket. 

the free height (0.163 inch) to the design installation height displacing 

an excess volume of NaK. With the filling ports still open, the bellows 

were further compressed to displace an additional volume of 7 cc to account 
for a 11.5 percent volume increase of NaK when heated from 60 to 900 F. 

The ports were closed at this point leaving a volume of 52.5 cc remaining 
from an original volume o f  69.5 cc. 

The seal was filled with 

When filled, the bellows were compressed from 

The seal was installed in the tester at a compressed height of 0.120 inch. 

To vetify the integrity of the closed system, the tester heater r o d s  were 
energized and the seal heated to 900 F. The drive motor was started which 
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5AJ34-2/24-66-C 1B 

Figure 27. Test  Setup, Orifice Damped Seal  (View 1 )  
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operated the eccentric crank to provide a shaft axial movement o f  0.060 

inch, thus compressing the bellows 0.070 inch and allowing thc bellows t o  

return 0.030 inch past the installed height. The motor speed was adjusted 

to maintain 30 cps for a period of 1,000,000 cycles. The test was completed 

with no mechanical difficulties. 

Because of multiple leakage flow paths downstream of the bellows sealing 
face, a known leakage rate was not obtained. The housing does not accommodate 
a static seal capable of withstanding the 900 F environment. Asbestos cloth 
was used in place of the normally used rubber O-ring. Because of the porous 
nature of the cloth, it permitted the escape of GN2 in the form o f  very 

small bubbles at a slow rate as indicated by the application of leak detec- 
tion solution. 
a range of  from 0.5 to 3 . 0  scfm as is normally the case. Posttest inspection 

of the seal was indicative of  satisfactory performance. No residue was ap- 

parent on the seal to indicate a loss of NaK. The test results showed that 

the response of the bellows relative to shaft and mating ring displacement 
was not overdamped by the use of NaK. Rmechanical cycling test would not 

normally show the effects of damping because the frequency is only 30 cps. 
Primarily, the mechanical cycling test is intended to demonstrate bellows 

integrity when the seal is exposed to a pressurized high-temperature system. 

The leakage can be described as very low and probably in 

RECOVERY RATE TESTS 

Following the mechanical cycling test of the orifice damped seal, a recovery 

rate test was conducted using the same seal containing the same volume of 

NaK. 

tion of decreasing bellows loading at a velocity greater than expected in 
advanced turbomachinery. 

The test consisted of displacing the shaft and mating ring in a direc- 

Two linear transducers monitor displacement 

67 



outputs, one mounted on the bellows sealing face and the other mounted on 

the shaft. With the eccentric cranlr removed, the method of shaft displace- 

ment (depicted in the following diagram) was accomplished by actuation of 
a pressure solenoid to produce a force in cavity No. 2. 

. -  

LSTOP NUT SEAL 

To reach the highest practical shaft velocity with the illustrated picture, 
the pressure in cavity No. 1 was reduced to 10 psig while the pressure in 

cavity No. 2 was 250 psig. 

0.060 inch to the stop was found to be 10 milliseconds. 
culation is based on the model shown in Fig. 21 and indicates that the 
shaft would have to travel the distance in less than 4.5 milliseconds before 
separation could occur, 

The elapsed time t o  travel the distance of 

The following cal- 
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The spring mass systen! is represented by the equation 

2 d x  m- 

I(x is positive because the bellows is in compression 

where 

I T  w = , I  m 

w = natural frequency 

k = spring rate 
m = spring mass 

The general solution is given as 

x = A Sin wt + B Cos wt 
where 

A and B are arbitrary constants 

At the compressed height (x) of 0.90 inch, the following initial conditions 

exist: 

at t = 0 (1) Xo = 0.062 inch when t = 0 the Sin wt becomes 0 

(2) = vo = 0 A = O a n d B = X  . .  0 

x then the solution is = X cos wt = - = 1 
xO 

0 

-1 1 -' SO, t = ,/F= 4.5 milliseconds :. t = cos - = cos 'VIK W 

This time is based on a nondamped system. The test results show that the 

bellows are not overdamped at the conditions tested. 

. -  
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A recovery rate test was also conducted on piston damped seal S/N 3. 
seal was installed at a compressed height of 0.090, and a mating ring 

displacement of 0.058 imposed which is 83 percent of the bellows free maxi- 

mum travel height. 
the 0.058 distance in less than 10 milliseconds without separation, and 
no increase in leakage was observed. 

The 

With a k P  o f  240 psig, the mating ring and seal moved 

P€U3SSURE CYCLING TEST 

An orifice damped seal was installed in the setup shown in Fig. 
was assembled from available hardware. The test consists of imposing 

oscillating L N  

cavity filled with recirculating L N  The seal was installed at the mean 2' 
design compression and remains at that compression unless influenced by 
the pulsating pressure as indicated by monitoring primary seal leakage. 

31which 

pressures on the primary seal bellows with the damping 2 

The seal cavity and LN 

and the balance piston was pressurized to over 2000 psig to balance the force 
produced by the accumulator bellows assembly. The hydraulic actuator was 
energized by a servovalve to pulsate the LN +50 psig. The response of the 

pressure transducer located in the seal cavity is shown in Fig.32 for 

3 ,  10, 20, and 30 cps. A pure sine wave was not apparent in the recorded 

data. The cause is due to a time lag in transducer sensing relative to the 

pressure actuation at the accumulator bellows. This condition is reflected 

at the transducer as a sine wave with a susperimposed harmonic stimulated 

by the accuxnulator bellows approaching a resonant condition. A further 

increase in frequency (from 10 to 30 cps) causes a greater change in 

amplitude. 
gross movement of  the entire test 

accumulator bellows were pressurized to 200 psig, 2 

2 

This increased amplitude was apparent during the test by a 

apparatus. 
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3 CPS 

I 

20 CPS 

10 CPS 

30 CPS 

Figure 32. Pressure Cycling Test Data 
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Attempts t o  modify the  system were considered;  however, a f t e r  180,000 

cyc le s  (90 percent a t  30 cps)  excessive leakage was noted a t  t h e  gas flow- 

r a t e s  and r e s u l t e d  i n  t e s t  shutdown. Disassembly of t he  t e s t e r  and in-  

spec t ion  of the bellows s e a l  i nd ica t ed  a bellows rup tu re  a t  t he  seond I D  

convolut ion approximately 1 inch long. 

Mode of f a i l u r e  w a s  a sce r t a ined  t o  be f a t i g u e  of t h e  convolut ion weld bead 

i n  the  hea t  a f f ec t ed  zone. The t e s t  d u r a t i o n  of 180,000 cyc le s  i s  the  

number o f  cycles  produced by t h e  a c t u a t o r  p i s t o n ,  

imposed on the  primary s e a l  bellows i s  approximately 3 t o  4 t imes 180,000 

c y c l e s ,  a s  can be noted i n  Fig. 32. The amplitude of t he  a d d i t i o n a l  cyc le s  

i s  i n  t h e  order of 10 psig.  

The number of cyc le s  

The r e c i r c u l a t i n g  LN2 used a s  t h e  damping f l u i d  was sub jec t  t o  a volume/ 

d e n s i t y  change which ind ica t e s  it may be necessary t o  l i m i t  use of t h i s  

design t o  f l u i d s  t h a t  can be contained and sea led  i n  t h e  damping cav i ty .  

TOTAL FACE LOADING TEST 

A s e r i e s  of t o t a l  load t e s t s  were conducted on p i s t o n  damped s e a l  S/N 5 
us ing  t h e  apparatus  shown i n  Fig.  33 , The t e s t e r  i s  used i n  conjunctioii  

wi th  an Ins t ron  machine which c o n t r o l s  t he  s h a f t  movement and records  t h e  

load exer ted  on t h e  load c e l l .  A remote system t o  supply and monitor t he  

t e s t  p ressure  i s  a l so  used. The Ins t ron  machine and t e s t e r  a r e  shown i n  

Fig.  34 .  The recording equipment i s  loca ted  ou t s ide  t h e  t e s t  c e l l .  
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LOAD CELL 1 

I / ADJUSTING 
SCREW 

MYLAR DIAPHRAM 

LOCATING PIN 

PRESSURIZED 
CAVITY 

SEAL LEAKAGE 

BELLOWS 
SEAL 

Figure 33. T o t a l  Face Load Tester 
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Figure 34. T o t a l  Load Test Setup 
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As discussed in the design section on the piston damped seal, the nechanical 

characteristics involved in face seal operation must be known to establish 

limits o f  design parameters. The primary factors concerned in bellows 
design which predict operational characteristics can be determined through 

total load tests are as follows: 

1. Spring force of the bellows through the desired operating range 

2 .  Effective hydraulic area 

3. The change of the bellows effective diameter caused by deformation 

of the bellows plates when varying the operational pressure 

4.  The change of seal face unit loading with respect to a change in 

compressed length or a change in pressure 

5 .  Seal leakage to test the adequacy of the pressure balance 

The test conducted on the piston damped seal was accomplished with existing 
hardware with the exception of the Mylar diaphragm used in the tester to 

maintain a static pressure environment. Prior to installation of a seal, 
the diaphragm was calibrated through the planned operating range of the 
bellows to account for the effective area change of the diaphragm. 

35 represents the plotted total load data for S/N 5. 
Figure 

The plot of bellows effective diameter (Fig. 3 6 )  is calculated data based 
on the total load data of Fig, 35 . 
oscillate. 

deformation under pressure causing plates to touch and share the load non- 

uniformly. Under normal operation, effective diameter change is only 0.005 

inch at the design operating point of 200 psig. 

As can be noted some of the load values 

These oscillations are assumed to be the result of bellows plate 
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VIBRATION TESTS (PISTON S m )  

A series of vibration tests 

and without a damping piston to observe seal face response at resonance. 

The seal was installed without a piston at the mean operating height in 

which the bellows is compressed 0.110 inch. A test housing encloses the 

seal to provide a volume for a GN or LN environment at the bellows OD. 
Displacement is monitored by two linear transducers, one attached to the 

bellows carrier and one mounted on the test housing to monitor relative 

movement. 

was conducted on a piston damped seal with 

2 2 

With no piston installed, two tests were run at 2 g and 5 g. 

sweep to 2000 cps showed three pointsof resonance (606, 1400, and 1800 cps). 
Both transducers indicated a maximum amplitude of 250 microinches. With 
a piston installed (0.002 clearance) the tests were repeated. 

indicated no change in amplitude. The environment was gaseous nitrogen 

heated to 900 F and pressurized to 200 psia. 
previous conclusion that damping will not occur with this system at 
small displacement amplitudes. 

A frequency 

The results 

Results of tests support the 

To increase the possibility of seal face liftoff, the compression load of 
the bellows was decreased beyond normal operation. With the bellows com- 

pressed 0,010 inches, the seal was subjected to the same frequency sweep 

but only the first indication of resonance was considered. The seal was 
exposed only t o  normal room atmosphere; at approximately 600 cps, liftof€ 

occurred with a maximum amplitude of 0.002 inch. 
using LN2 to note any change in amplitude caused by a fluid condition 
pressurized to 200 psig. 

The test was repeated 
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The resonant frequency and maximum amplitude decreased by a very small 

amount under LN 

existed with the displacements involved and the type o f  fluid used. The 
quality or liquid/vapor fraction of LN2 used may be questionable because 
considerable leakage occurred at the resonant frequencies. 
of gas leakage from the liquid supply could cause a two-phase fluid condition. 

environmental conditions and indiated that little damping 
2 

This amount 

V I m T I O N  TESTS (PARTICLE SEAL) 

Initially, a series of tests were conducted to document the performance 

of the particle damped seal to compare the resulks with the beam testing 
described previously of the particle damped seal design and to establish 
the most effective level of fill of the particle containers. One piezo- 

electric accelerometer was bonded to the seal face with its exciting axis 

parallel to the seal’s longitudinal axis. A control accelerometer was 

installed on the vibration fable to monitor input excitation. The test 

setup used is shown in Fig. 3’7, 
the bellows restrained. The motion of the seal was free axial movement 
responding to an input acceleration of 0.5 g. The molybdenum particles 

used t o  examine the danping effect were chosen based on previous beam tests 

which show that particles having a -325 sieve size rating give the best 

results. This sieve size includes particles of  44 microns and below. A 

random sample is shown in Fig. 38. Close examination shows the particles 
to be spherical in shape and having a relatively smooth sixface. 

No special environment was used nor was 

The tests were conducted with an exciting force held constant (0.5 g peak) 
and the frequency varied from 20 cps to 1 kilocycle. Relative damping was 

determined by measuring the bandwidth of the resonant peak at the half-power 
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Texture of 
?hot0 Paper Blurred Edge is Due to 

Magnification Resolution \ 

150 x 

Largest Particle is 
44 Microns in Size 

Figure 38. Molybdenum Spherical Powder 



points in terms of normalized frequency. The diagram below illustrates 

the damping measurement. 

RESONANT POINT 

/-HALF-POWER POINT 

0.707 XMAX. ~ 

f " f " 

where 

= resonant frequency fn 
fl = lower half-power frequency 

f2 = upper half-power frequency 

In addition to damping, the frequency at resonance and the amplification 
at resonance were measured and recorded. The amplification is defined 

as the ratio of acceleration into the mass to the acceleration out, and 

is another term used to define effective damping. 

I N C .  

As the bandwidth increases, relative damping also increases. The formula 

used to compute relative damping f o r  this case is: 

f2 ) A f = Relative damping = II ' 2 - - ' fn fn 

. -  

G out or AO Amplification = - 
Ai G in 
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r 

Test Capsule 
No. Condition 

1 b P t Y  
2 1/4 Full 

3 1/2 F u l l  

4 3/4 Ful l  

5 Fu l l  

The fol lowing a r e  t h e  tabula ted  t e s t  r e s u l t s :  

TABLE 7 

TEST DATA, BELLOWS UMlESTRAINED 

f l  

75.5 
71.1 
66.5 
62.4 

60.0 

io/Ai  G i n  G out 

LO8 0.5 54 
51 0.5 25.5 

43 0 .5  21.5 

35.2 0 . 5  17.6 
93 0.5 46.5 

The t e s t  r e s u l t s  f o r  two cases ,  empty and t h e  m o s t  e f f e c t i v e ,  show t h a t  

a reduct ion  i n  ampl i f i ca t ion  of 66 percent  occurs  from empty t o  3/4 f u l l .  

A s e r i e s  of t e s t s  were conducted t o  e s t a b l i s h  the amount of damping a v a i l -  

a b l e  wi th  t h e  sp r ing  mass system r e s t r a i n e d  a s  i n  a c t u a l  ope ra t ion ,  

bellows was compressed 0.085 inch by a d i s c  mounted a s  an i n t e g r a l  p a r t  

of t h e  v i b r a t i o n  t a b l e ,  t he re fo re  imposing a cons tan t  load on t h e  bellows. 

The 

Tes t s  were conducted i n  a frequency sweep range from 30 cps t o  2 k i l o c y c l e s  

a t  v i b r a t i o n  input  l e v e l s  of 1, 5 ,  10 ,  and 20 g rms with  t h e  p a r t i c l e  

ho lde r s  both empty and 3/4 f u l l .  

t o  v e r i f y  t h e  p a r t i c l e  ho lder  optimum f i l l i n g  l e v e l .  

A s h o r t  t e s t  was a l s o  run a t  3/8 f u l l  
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The accelerometer data was recorded on log paper plotting the frequency 

vs bellows response ( g  rms). 

points of resonance occurred at different frequencies. 

be defined in terms of the fundamental frequency and the half-power points 

as was the case in the unrestrained bellows tests; therefore, maximum out- 

put response (g rms) was used and damping referred to as the ratio of the 

two outputs, empty and 3/4 full. 
showing damping as: 

As a result of loading the bellows, several 

Damping could not 

Table 8 presents the data for the tests 

rms undamped A =  damping = with constant input 
g rms damped 

nput 
GI 

1 
1 

5 
5 

0 

0 

'0 

TABLE 8 

TEST DATA, BELLOWS RESTRAINED 

Maximum 
Response 

GO 

28 

3.8 

72 
34.8 

118 

53 

Frequency 
at 

Maximum 
Response 

906 

1065 

1066 

Damping 
A 

7.4 

2.08 

2.2 

Part ic 1 e s 

0 

3/4 full 

3/94 full 

3/4 full 

0 

0 

(damping not defined for 20 g case caused by 
bellows failure) 

A typical response plot is represented in Fig. 39 and 40 for the 
case. 
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The 20 g data shown in Fig. 41 and 42 
compared to the lower level inputs of 5 and 10 g. Disassembly of the 

test apparatus and inspection of the seal revealed a severe bellows rup- 

ture at the ID of the second convolution from the rear bellows carrier. 
The observed rupture is indicative of a fatigue failure. The occurrence 

of the failure shows that the bellows life for this case was in the range 
o f  35- to 40-million cycles and represents the total of the testing pre- 

sented in Table 8 , and includes an average frequency of  1000 cps o f  which 
10 percent of  that duration was at resonant conditions. As the vibration 

test continued, the data became more erratic indicating a pronounced 

failure. The extent of the rupture was observed to be 7 5  percent o f  the 

welded convolution. 

indicated an unreasonable response 

To establish a comparison between conventional friction and particle damp- 

ing, a test was conducted on an experimental frictional damped seal which 

has been used in the 5-2 Mark 15 oxidizer turbopump. 
results indicated a very low carbon wear rate with low leakage. Wave 
springs loaded against both the carbon carrier and bellows convolutions 
supply the vibration damping medium. 

The turbopump test 

The response of the bellows is shown in Fig. 43 at the 10 g level input, 
the output is 35 g at a maximum amplitude at 1900 cps. 

Comparing this data with the 10 g input particle damped seal data, the 

following information is apparent: 

1. With the same vibration input, the output of the particle seal 

is 50 g vs 35 g for the frictional damped seal. 

2.  While the damping characteristics appear to be better for the 

frictional seal, it should be noted that the spring mass of the 

particle seal is approximately 10 times as great as that of the 

conventional seal, and therefore the damping required is cor- 
re s pond ingl y great er. 
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The damping effect obtained by use of the particles is described in 

Table 8 and indicates a reduction in damping from 1 to 5 g input. A 
further increase in input t o  10 g shows no relative difference in damp- 

ing between 5 and 10 g, which may indicate a saturation point for the 
system tested. This condition makes apparent the need for further con- 
sideration in design of the particle containers to absorb additional 

energy. The results of the test data initiated the consideration of an 

improved design which incorporates stationary flexible baffles in the 
containers to respond to particle movement. Previous tests also indicate 

a greater damping effect is obtained when a greater number of particles 

are used. This indication is also being considered. The following is 

a program which is tentatively recommended to advance the particle domp- 

ing concept and accomplish the above task. 

Design 

The use of the cylinders containing the particles in the current design 
requires an additional approach to increase the damping potential as 

indicated by the vibration test results. A preliminary design currently 
in process incorporates a method to include more particles with the con- 
tainers having stationary flexible baffles responding to particle movement. 
The required amount of damping for successful operation of a turbopump 

bellows seal is not known at this time, nor  is the principal mode of 

vibration identified. Although only the axial mode was tested in this 

program, the torsional mode may predominate in turbopump testing and 

could require greater emphasis. For this reason, and to observe seal 

performance, a series of tests simulating turbopump operation are rec- 

ommended. This requires the addition of a carbon seal face to allow 

rotation. 
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Six seals are suggested for fabrication: 

to incorporate dimensions obtaining two different pressure balance ratios 
and two different bellows spring rates. 

three each of the seals designed 

Dynamic Te sting 

The tests will be conducted at the Santa Susana Field Laboratory ( S S n )  

California and will use a modified 5-2 Mark 15-F seal tester using pres- 

surized LO as the test fluid. Facilities include the necessary 

instrumentation to measure seal leakage, imposed vibration, fluid temp- 

erature, pressure, and shaft speed. 

2 

Generally, the test conditions recommened are: 

1. Shaft speeds up to 20,000 rpm 

2 .  LO temperature at bellows OD, -323 F 

3.  LO pressures up to 250 psig 

2 

2 
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APPENDIX 

SEAL CONCEPTS CONSIDERED FOR EVALUATION 

A description of the seals considered for evaluation i s  

following summary. 

reported in the 

LIQUID METAL SEAL 

The liquid metal seal (Fig.44) utilizes a liquid metal barrier to retain 

the sealed fluid. A ring of liquid metal is forced against the seal 
housing with sufficient centrifugal force to overcome the effect of the 

sealed pressure acting on the liquid metal in the opposite direction. 

This seal was selected for further study because it offers zero leakage 
possibilities. Problems of storing the heavy fluid, starting, and the 
stability of the interface m s t  be resolved before the concept is suit- 

able for rocket engine applications. 

MOLDED SM:OM)..L\RY SEAL 

The molded secondary seal (Fig.45) consists o f  a standard type nosepiece 
mated to a coil spring with a molded cover. The molded cover must be 
pliable and elastic and in addition, must be compatible with and provide 
acceptable sealing of the fluid. Because o f  the limited teaperature 

capability (both hot and cold) of presently available materials, this 
seal concept was eliminated for further consideration. 
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Figure 44, L i q u i d  Metal Seal 
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ROTATING SHAFT- 

Figure 45. Molded Secondary S e a l  
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KEATED LABYRINTH SEAL 

The heat labyrinth seal (Fig. 46) is a two-stage, labyrinth-type seal 
consisting of a first stage to effect a pressure drop with liquid 
(cryogenic) flow, and a second stage to effect the final drop with gas 
flow. Between the two stages a heat source would,ensure the liquid 

would be flashed to a gaseous state and its temperature increased. This 
seal is actually a controlled leakage device and a fairly high power 

consumption would be necessary to effectively vaporize the liquid. 

these reasons the seal was dropped from further consideration. 

For 

s m  PUMP SEAL 

The shaft pump seal (Fig.47 ) incorporates a spiral lip on the shaft to 
provide a pumping action to balance the leakage flow. 
housing would be coated with some plastic material to prevent scoring 

in the event of contact resulting from the close clearance requirements 
between the shaft and housing. This concept shows some promise in 
turbomachinery applications; however, the problem of leakage prior to 
rotation and the possible instability of the interface rule out further 

consideration under this contract. 

The base of the 

SEGMENTED CARBON SEAL 

The face of the segmented carbon seal (Fig. 48) consists of a segmented 
carbon ring loaded radially against the seal housing ID. 
the seal is cut into one side of the ring. The segmented ring seals 
both against the rotating mating ring and the housing of the seal. A 

The nose of 

98 



Ik ROCYETDYNE A D I V I S I O N  O F  N O R T H  A M E R I C A N  A V I A T I O N ,  I N C  

LROTATING SHAFT 

Figure 4 6 .  Heated Labyrinth Seal 
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SPIRAL LIP 

[ r P U M P  HOUSING 

t 
SHAFT 

ROTAT ION 

Figure 47. Shaft '  Pump Seal  
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CARBON-TO- HOUSING SEAL 

SEGMENTED 
CARBON 

BELLOWS CAPSULE 1 

SPRING TO EXERT 1 
RADIAL IDAD OUTWARD 

F i g u r e  48 - Segmented Carbon B e l l o w s  
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bellows is used to load the carbon against the mating ring and also pro- 

vide a second sealing element between the carbon and housing. This seal 

was eliminated from consideration because of excessive complexity. 

BLADDER SEAL 

The bladder seal configuration (Fig.. 49) consists of a standard face seal 
rotating against a rotating mating ring, but incorporates a bladder or 
diaphragm-type secondary seal element (radial bellows). 
cated that the radial bellows configuration would be excessively stiff 
axially with presently used seal construction materials required because 
o f  the high-pressure requirements and was eliminated from further 
consideration. 

Analysis indi- 

SEGMENTED SECONDARY SEAL 

A standard composite design used in lip or elastomer-type seals would be 
used in conjunction with a segmented carbon secondary sealing element 

(Fig. 5 0 ) .  
advantages further work was discontinued. 

Because of the complexity o f  the design relative t o  its 

LABYRINTH BELLOWS SEAL 

The labyrinth bellows seal (Fig.51) design consisted of a standard 
bellows-type seal to which was added a labyrinth-type seal between the 
seal housing and a cylindrical skirt attached to the seal carrier. 
function of the labyrinth would be to damp pressure surges and thus 
increase the life of the bellows. 
similar to the piston damped seal which was selected for further 
analysis; therefore, further work on this seal was stopped. 

The 

The operation of  this seal is quite 
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SEAL 

M ETA 

SEAL 

31 

RING INSERT\ \ 

BELLOWS 

. 

Figure 49. Bladder Seal 
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Figure 50. Segmented Secondary Seal 

SEAL 

- 
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Figure 51. Labyrinth Bellows Seal 
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Figure 52. Viscous Damped ( P i s t o n  Sea l )  
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VISCOUS DAMPED SEAL (PISTON SEAL) 

I n  t h e  viscous damped s e a l  (Fig.  52)  t h e  OD of t h e  carbon c a r r i e r  of a 

standard bellows s e a l  was redesigned t o  incorpora te  a p i s t o n  r i n g  e f f e c t .  

The c l o s e  clearance of t h e  c a r r i e r  t o  t h e  housing allows a small f low 

area between t h e  sealed c a v i t y  and t h e  bellows cav i ty .  Rapid movements 

of t h e  s e a l  f a c e  would be damped by viscous a c t i o n  of t h e  f l u i d  forced 

t o  flow through t h e  small clearance area.  This s e a l  was se l ec t ed  f o r  

f u r t h e r  a n a l y s i s  and t e s t i n g .  

PURGED DOUBLE LIP SEAL 

The purged double l i p  s e a l  design (Fig. 53) c o n s i s t s  of two l i p  seals  

back-to-back, s e a l i n g  a g a i n s t  a s k i r t  of a standard l i p  s e a l  composite. 

Purge gas i s  introduced i n  t h e  cavi ty  between t h e  l i p s  and provides  

pressure  t o  hold t h e  l i p s  against  t h e  s k i r t ,  The primary seal  i s  a 

s tandard nosepiece and m a t i n g  r i n g  configurat ion.  The double l i p  sea l  

w a s  s e l ec t ed  f o r  f u r t h e r  a n a l y s i s  s i n c e  i t  offered t h e  advantages of 

(1) being adaptable  t o  r e a c t i v e  f l u i d s ,  and (2) having variable damping 

c a p a b i l i t i e s  as t h e  l ip- to-skir t  load can be cont ro l led  by t h e  purge 

p res su re .  

PRESSURE-LOADED SEAL 

The pressure-loaded s e a l  (Fig.,54 ) c o n s i s t s  of a c l o s e  f i t t i n g  c y l i n d r i -  

ca l  nosepiece f i t t e d  i n t o  an annular opening i n  t h e  housing. High- 

pressure  purge gas would be used t o  maintain p r o p e l l a n t  separa t ion  and 

a l s o  load t h e  seal  a g a i n s t  t h e  mating piece.  To a l low f o r  misalignment, 
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Figure 53. Purged Double L i p  Seal 
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7 PURGE SUPPLY PORT 

Figure 54. Pressure Loaded Seal 
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l i p s  would be i n s t a l l e d  a g a i n s t  t h e  I D  and OD of t h e  nosepiece t o  a l low 

clearance between t h e  nosepiece and t h e  housing. 

t h i s  s e a l  t o  misalignment r e s u l t e d  i n  i t s  being dropped from f u r t h e r  

considerat ion.  

The low t o l e r a n c e  of 

VISCOUS DAMPED SEAL (ORIFICE SEAL) 

Concentr ical ly  located bellows are joined t o  a common housing and a 

common c a r r i e r  t o  form an annular  c a v i t y  between t h e  bellows. The a r e a  

between t h e  bellows i s  vented through an o r i f i c e  i n  such a way as t o  

provide viscous f o r c e s  as t h e  f l u i d  i a  forced through t h e  o r i f i c e .  The 

o r i f i c e  damped bellows s e a l  (Fig. 55 ) w a s  se lec ted  f o r  f u r t h e r  a n a l y s i s  

and t e s t i n g  as i t  o f f e r s  a f e a s i b l e  s o l u t i o n  t o  i n c r e a s e  t h e  l i f e  of t h e  

bellows. 

HYDROSTATIC SECONDARY SEAL 

A hydrostatic-type journa l  bear ing i s  located around t h e  OD of t h e  s k i r t .  

The composite s k i r t  would be similar t o  t h a t  used on a s tandard l i p  seal .  

T!ie hydros ta t ic  p o r t ;  on wou ld  c e n t e r  t h e  composite and t h e  high-pressure 

gas would provide a backup s e a l .  

stream of t h e  hydros ta t ic  bear ing ,  one would s e a l  t h e  high-pressure 

propel lan t  and t h e  o t h e r  would seal  t h e  high-pressure purge from t h e  

bear ing.  A d ra in  would be provided between t h e  l i p s .  

Two l i p  seals would be i n s t a l l e d  up- 

The hydros ta t ic  secondary seal  (Fig. 56) i s  considered complex f o r  t h e  

advantages offered and w i l l  have a low t o l e r a n c e  f o r  misalignment. It 

w i l l  a l s o  r equ i r e  a high volume of purge f l u i d  and, t h e r e f o r e ,  w i l l  n o t  

be considered f u r t h e r  i n  t h i s  program. 
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vi SEAL HOUSING 

CARRIER - n\\u 

Figure 550  Viscous Damped (Bellows Seal)  
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1 PURGE SUPPLY PORT 

BLEED 

!ING 

Fignre .  56. IIpdrostat ic  Secondary Seal 
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PACKING CLAM) SECONDARY SEAL 

This seal (Fig. 57)  utilizes a packing gland which would replace the 
usual lip or elastomer. 

The limited applicability of the design using presently known materials 

led to rejection of this design for turbopump applications. 

MACHINED BEILOWS SEALS 

Naflex-type machined segments would be stacked together and welded to 

form a bellows assembly. Fig. 58 shows the configuration in which the 
inner surface of  the segments are pressurized and Fig. 59 shows the 
segment reversed and the outer surface o f  the segments are pressurized. 

The complexity of stress analysis and the estimated high cost of experi- 
mental development led to exclusion of this design from the present 

program. The configuration, however, is considered t o  have merit and 
could be analyzed further. 

BALL CENTERED SEAL 

The radial position of the secondary seal composite in this design would 

be maintained by a row of balls located between the housing and composite 

to obtain low frictional axial movement. A housing would be used behind 

the balls to provide sealing. 

The ball centered seal composite 

axial movement would have little angular misalignment capacity; and, 
therefore, its applicability is limited. It will not be considered 

further for this program. 

(Fig. 6 0 )  while it would allow free 
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GLAND 

Figure  57. Pocking Gland Secondary S e a l  
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JOINTS 

-NAFLEX 
TYPE 
SEAL 

Figure  58- Machined Bellows (OD P r e s s u r i z e d )  Seal  
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Figure 59. Machined Bellows (ID Pressurized) Seal 
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Figure 60. Ball Centered Seal 
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